(1) The specified load, S, due to snow and associated rain accumulation on a roof or any other building surface subject to snow accumulation shall be calculated from the formula,
S = Is [Ss (CbCwCsCa) + Sr]
where,
Is =importance factor for snow load as provided in Table 4.1.6.2.A.,
Ss =1-in-50-year ground snow load, in kPa, determined in accordance with Subsection 1.1.2.,
Cb =basic roof snow load factor in Sentence (2),
Cw =wind exposure factor in Sentences (3) and (4),
Cs =slope factor in Sentences (5), (6) and (7),
Ca =accumulation factor in Sentence (8), and
Sr =1-in-50-year associated rain load, in kPa, determined in accordance with Subsection 1.1.2., but not greater than Ss(CbCwCsCa). (2) The basic roof snow load factor, Cb, shall be,
(a) for l_c ≤ (70 / C_w^2), 0.8, and
(b) for l_c ≤ (70 / C_w^2),
[[FORCE_FORMULA]] i. calculated using the following formula:
[[FORCE_FORMULA]] 1/Cw (1-(1-0.8Cw) exp (-IcCw²-70/100))
where,
lc =characteristic length of the upper or lower roof, defined as 2w-w²/l, in metres,
w =smaller plan dimension of the roof, in metres, and
l =larger plan dimension of the roof, in metres, or
ii. determined in accordance with Table 4.1.6.2.B., using linear interpolation for intermediate values of IcCw²
(3) Except as provided for in Sentence (4), the wind exposure factor, Cw, shall be 1.0. (4) For buildings in the Low and Normal Importance Categories as set out in Table 4.1.2.1.B., the wind exposure factor given in Sentence (3) may be reduced to 0.75 in rural areas, or to 0.5 in exposed areas north of the treeline, where,
(a) the building is exposed on all sides to wind over open terrain as defined in Clause 4.1.7.1. (5)(a) , and is expected to remain so during its life,
(b) the area of roof under consideration is exposed to the wind on all sides with no significant obstructions on the roof, such as parapet walls, within a distance of at least 10 times the difference between the height of the obstruction and CbCwSs/γ metres, where γ is the unit weight of snow on roofs as specified in Article 4.1.6.13., and
(c) the loading does not involve the accumulation of snow due to drifting from adjacent surfaces. (5) Except as provided for in Sentences (6) and (7), the slope factor, Cs, shall be,
(a) 1.0 where the roof slope, α, is equal to or less than 30°,
(b) [[NO_FORMULA]] (70° - α)/40° where α is greater than 30° but not greater than 70°, and
(c) 0 where α exceeds 70°. (6) The slope factor, Cs, for unobstructed slippery roofs where snow and ice can slide completely off the roof shall be,
(a) 1.0 when the roof slope, α, is equal to or less than 15°,
(b) [[NO_FORMULA]] (60° - α)/45° when α is greater than 15°, but not greater than 60°, and
(c) 0 when α exceeds 60°. (7) Except as otherwise provided in this Subsection, the slope factor, Cs, shall be 1.0 when used in conjunction with accumulation factors for increased snow loads. (8) The accumulation factor, Ca, shall be 1.0, which corresponds to the uniform snow load case, except that where appropriate for the shape of the roof, it shall be assigned other values that account for,
(a) increased non-uniform snow loads due to snow drifting onto a roof that is at a level lower than other parts of the same building or at a level lower than another building within 5 m of it horizontally, as prescribed in Articles 4.1.6.5., 4.1.6.6. and 4.1.6.8.,
(b) increased non-uniform snow loads on areas adjacent to roof projections, such as penthouses, large chimneys and equipment, as prescribed in Articles 4.1.6.7. and 4.1.6.8.,
(c) non-uniform snow loads on,
(i) gable roofs, as prescribed in Article 4.1.6.9., and
(ii) arched roofs, curved roofs and domes, as prescribed in Article 4.1.6.10.,
(d) increased snow or ice loads due to snow sliding, as prescribed in Article 4.1.6.11.,
(e) increased snow loads in roof valleys, as prescribed in Article 4.1.6.12., and
(f) increased snow or ice loads due to meltwater draining from adjacent building elements and roof projections. (9) For shapes not addressed in Sentence (8), Ca corresponding to the non-uniform snow load case shall be established based on applicable field observations, special analyses including local climatic effects, appropriate model tests or a combination of these methods.
(1) The drifting load of snow on a roof adjacent to a higher roof shall be taken as trapezoidal, as shown in Figure 4.1.6.5.A., where the accumulation factor, Ca, is,
[[FORCE_FORMULA]] Ca = Ca0 – (Ca0 – 1)(x/xd), for 0 ≤ x ≤ xd
or
[[FORCE_FORMULA]] Ca = 1.0, for x > xd
where,
Ca0 =peak value of Ca at x = 0 as specified in Sentences (3) and (4) and as shown in Figure 4.1.6.5.A.,
x =distance from roof step as shown in Figure 4.1.6.5.A., and
xd =length of drift as specified in Sentence (2) and as shown in Figure 4.1.6.5.A. (2) The length of the drift, xd, shall be calculated as follows:
x_d = 5 · (C_b S_s / γ) · (C_ao − 1)
where,
γ =specific weight of snow as specified in Article 4.1.6.13. (3) The value of Ca0 for each of Cases I, II and III shall be the lesser of,
C_aθ = β · γ h / (C_b S_s) and C_a0 = F / C_b
where,
β =1.0 for Case I and 0.67 for Cases II and III,
h =difference in elevation between the lower roof surface and the top of the parapet on the upper roof as shown in Figure 4.1.6.5.A., and
F = 0.35 · β · √(γ (l_cs − 5 h_0) / S_s) + C_b; but F ≤ 5 when C_ws = 1.0
where,
Cws =value for Cw applicable to the source of drifting,
lcs =the characteristic length of the source area for drifting, defined as l_cs = 2·w_s − (w_s^2 / l_s), where ws and ls are respectively the shorter and longer dimensions of the relevant source areas for snow drifting shown in Figure 4.1.6.5.B. for Cases I, II and III, and
h_p' = h_p − (0.8 · S_s / γ), with 0 ≤ h_p' ≤ (l_cs / 5)
where,
hp =height of the roof perimeter parapet of the source area, to be taken as zero unless all the roof edges of the source area have parapets. (4) The value of Ca0 shall be the highest of Cases I, II and III, considering the different roof source areas for drifting snow, as specified in Sentence (3) and Figure 4.1.6.5.B.